Utility Management & Government Affairs Technical Program PennTec Conference June 18 – 21, 2023

DON'T FLUSH YOUR SAVINGS: COST EFFECTIVE ENERGY CONSERVATION FOR YOUR PLANT

Ben Pressman, PE Heather Cowley

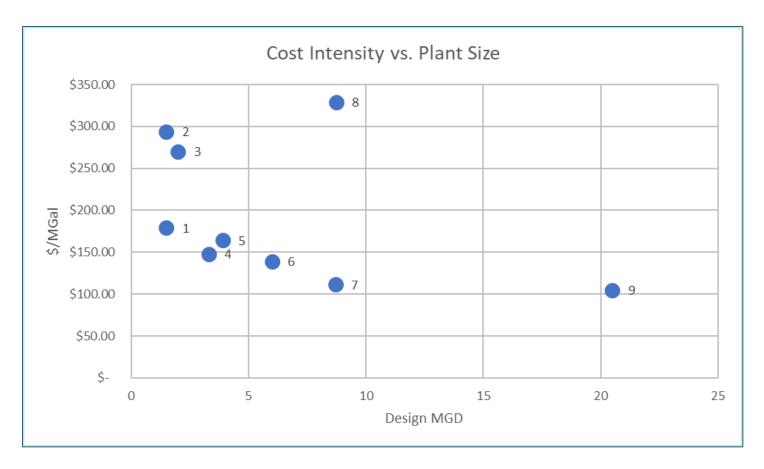
SPOTTS | STEVENS | MCCOY

Engineering, Surveying and Environmental Services ssmgroup.com

Costs and Impacts of Wastewater Treatment

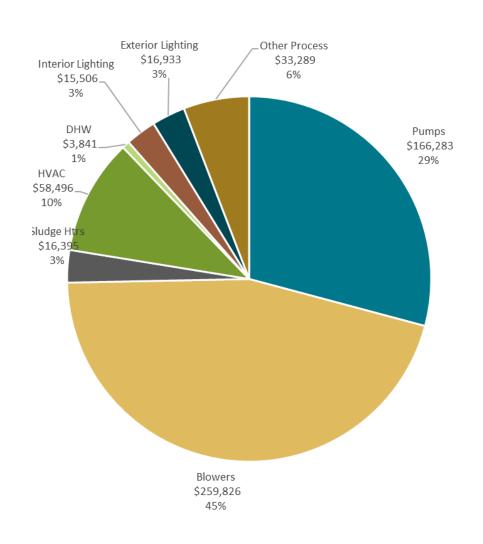
- What is the energy cost of wastewater treatment?
- How do WWTPs use energy?
- How do we balance increasingly stringent water quality standards with other goals?
 - Costs
 - Air quality
 - Solid waste disposal
 - Energy conservation

What is the energy cost of wastewater treatment?


- PA DEP Partnership for Energy Efficiency in Wastewater Treatment Plants (PEW2)
 - US DOE's SWIFt program training + benchmarking, energy assessments, assistance with energy tools and peer opportunities
 - Nine WWTPs in eastern and western PA participating
 - Process analysis, operational/capital opportunities, focus on nonprocess loads, e.g. lights, HVAC, DHW

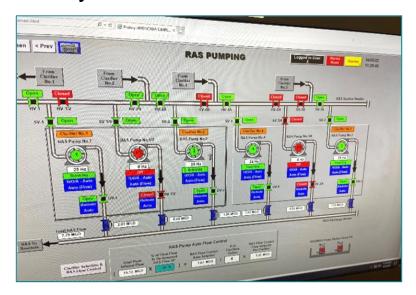
What is the energy cost of wastewater treatment?

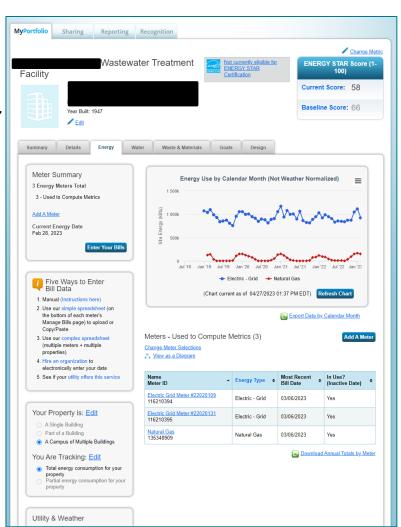
Comparison of WWTP energy cost per gallon treated



What is the energy cost of wastewater treatment?

Plant#		nnual gy Cost	Capacity	Avg MGD 2021	% Capacity	ENERGY STAR Score	Cost ntensity \$/Mgal]	Activated Sludge	Other Treatment Processes	UV Disinfection	Aerobic Digestion	Anaerobic Digestion
1	\$	70,881	1.5	1.0	67%	24	\$ 179.00		•		•	
2	\$:	101,264	1.5	1.0	68%	22	\$ 293.75		•			•
3	\$	93,764	2	1.0	50%	29	\$ 270.00		•	•		•
4	\$:	133,013	3.3	2.5	77%	39	\$ 148.00	•		•		•
5	\$ 2	211,484	3.9	3.5	89%	60	\$ 164.00	•		•		•
6	\$:	183,015	6	3.6	61%	49	\$ 139.00	•			•	
7	\$ 2	245,782	8.7	6.3	72%	36	\$ 111.30	•	•			
8	\$ 4	428,150	8.7	3.6	42%	19	\$ 329.00		•		•	
9	\$!	584,451	20.5	15.2	74%	63	\$ 104.71	•				•


How do WWTPs use energy?


- Typical activated sludge plant
 - Blowers 45%
 - Activated sludge treatment
 - Aerobic digestion
 - Pumps 29%
 - Raw sewage pumps
 - RAS pumps
 - HVAC 10%
 - Other Process 9%
 - UV disinfection
 - Centrifuge/dewatering
 - Lighting/DHW 7%

Tracking WWTP energy performance

- Benchmarking
 - Internal tracking
 - ENERGY STAR Portfolio Manager
 - DOE/DEP tools
- Equipment sub-metering
- SCADA systems

How can WWTPs improve energy performance?

Energy conservation

- SCADA systems
- Variable frequency drives (VFDs)
- Digestion and dewatering
- Natural aeration
- Automatic lighting controls
- HVAC temperature and setback controls

Energy efficiency

- Right-sized motors
- LED lighting
- High efficiency HVAC systems

Renewable energy

- On-site (e.g. solar, microturbine)
- Grid-purchased (e.g. wind)

	Centrifuge	Screw Press	Belt Filter Press
Operator Attention	Med	Low	High
Maintenance	High	Low	Med
Power Draw	High	Low	Low
Odor	Med	Low	High
Noise	High	Low	Low
Polymer Use	Med	High	Low
Solids Capture	High	Med	Low
Footprint	Small	Large	Med
Capital Cost	High	Med	Low
Feed Sensitivity	Low	High	Med
Est. Energy Use (kWh/yr)	87,282	34,913	23,275
Est. Energy Cost (\$/yr)	\$5,785	\$2,314	\$1,543
Avoided Energy Cost (\$/yr)	-	\$3,471	\$4,242

How can WWTPs improve energy performance?

Plant #	Key ECMs	Total Project Cost	Total Savings	Payback, yrs	% of Total Energy Cost	Process % of Total Savings	HVAC % of Total Savings	Other % of Total Savings
8	Blower control, LEDs, UH control	\$12,300	\$73,700	0.2	16%	86%	8%	5%
3	Upgrade UV disinfection, Screw press dewatering, Aerobic digestion, LEDs, Heat pumps	\$31,500	\$18,100	1.7	20%	96%	1%	3%
2	RBC control, sludge heater fuel switching, LEDs, heat pumps	\$83,800	\$34,900	2.4	30%	68%	21%	11%
9	Blower control, Automatic lighting control, Heat pumps	\$229,200	\$72,600	3.2	13%	76%	16%	8%
7	Blower control, Prioritize trickling filters, LEDs, Heat pumps	\$310,200	\$77,800	4.0	30%	93%	3%	4%
5	Blower control, Upgrade UV disinfection, LEDs, UH control	\$191,800	\$23,700	8.1	12%	70%	6%	24%
6	Replace blowers, Blower control, LEDs, UH control	\$344,600	\$39,400	8.8	20%	94%	1%	5%
1	Fine bubble diffusers, Fix air leaks, Replace blowers, LEDs, UH control	\$265,000	\$19,100	13.8	28%	86%	9%	5%
4	Post-SBR equal. tank, Blower control, LEDs, radiant heat	\$776,400	\$30,800	25.2	23%	88%	8%	4%
Avera	ige	\$249,400	\$43,300	5.8	21%	84%	8%	8%

Case Study: Energy vs. Compliance

- WWTP #7
 - 8.7 MGD capacity, currently averaging 6.3 MGD (72%)
 - ENERGY STAR score: 36
 - Water treatment
 - Trickling filters vs. activated sludge 50% difference in energy use
 - Solids handling
 - Incineration
 - Digestion
 - Dewatering
 - Disposal

PA DEP Partnerships and Resources

Biggest take-aways for EPO:

- Goal is clean water many paths, same outcome
- Design firms leave out energy plants need total energy cost analysis: capital vs. operating
- Simplest tool for plants: Portfolio Manager
- PA Partnership for Energy Efficiency (PEW2)²
 - Repeat program 2024-27
 - Looking for 25 facilities: Training, Energy Star Benchmarking, Assessment, Energy Emergency Planning & Security
- Other initiatives for WWTP energy conservation
- Trends in compliance updates (e.g. PFAS)
- Coordination between energy team and compliance teams

Review of the presentation's highlights

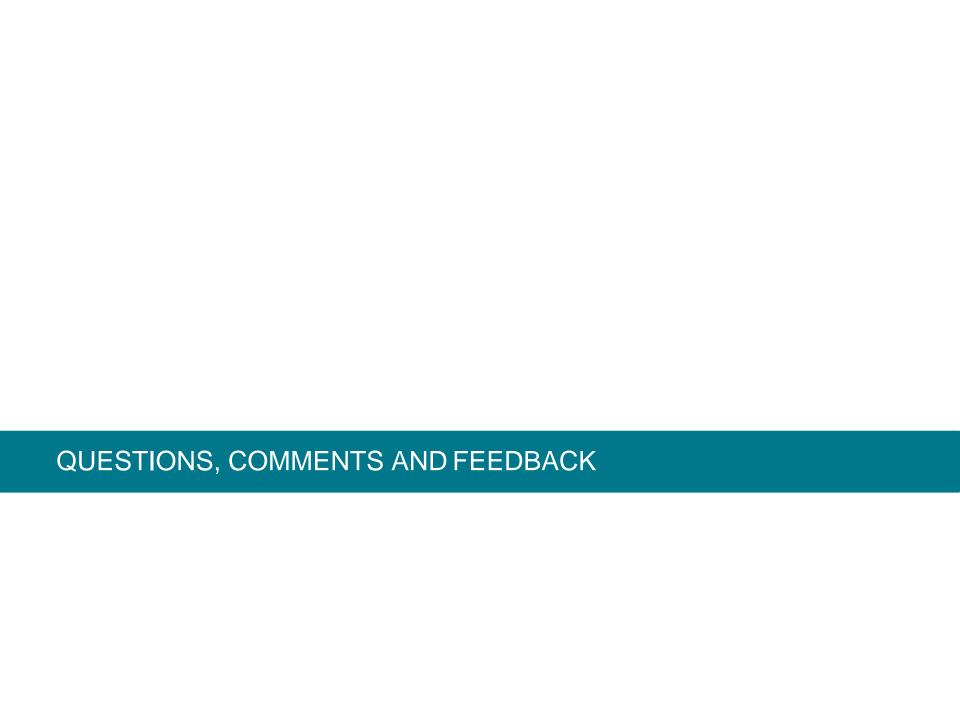
Have a plan to continuously improve energy performance

Strive to balance energy and compliance

Use automated controls to maximize efficiency

performance

Optimize control of largest energy users


Don't forget about lights & HVAC!

Coordinate with DEP

Take advantage of DEP Energy programs

Additional Resources

- ENERGY STAR Portfolio Manager energystar.gov/buildings/benchmark
- DOE/DEP tools dep.pa.gov/Business/Energy/pages/default.aspx
- Third-party consultants <u>ssmgroup.com</u>

Thanks for joining us! Download the slides at ssmgroup.com

BEN PRESSMAN, PE

Project Mechanical Engineer Energy Services Direct: 610-609-8357

Ben.Pressman@ssmgroup.com

HEATHER COWLEY

Regional Energy Specialist
PA Department of Environmental Services
Direct: 484-250-5816

HCowley@pa.gov

CONNECT WITH US.

@ssmgroup